Chemical control of dissolution-driven convection in partially miscible systems: nonlinear simulations and experiments.
نویسندگان
چکیده
Chemical reactions can impact mixing in partially miscible stratifications by affecting buoyancy-driven convection developing when one phase dissolves into the other one in the gravity field. By means of combined nonlinear simulations and experiments, we explore the power of an A + B → C type of reaction to either enhance or refrain convective dissolution with respect to the nonreactive system depending on the relative contribution to density of the dissolving species A, of the reactant B initially dissolved in the host phase and of the product C. Nonlinear simulations are performed by solving reaction-diffusion-convection equations describing the dissolution and reactive dynamics when a less dense phase of A is layered on top of a reactive denser solution of B, in which A is partially miscible with a given solubility. The spatio-temporal dynamics and convective patterns observed in the numerical study compare favorably with experiments carried out with (i) a liquid alkyl-formate stratified on top of an aqueous solution in which the ester dissolves and undergoes a hydrolysis reaction and (ii) gaseous CO2 dissolving into an aqueous solution of NaOH. We show that the same reaction type can induce a different effect on the convective dynamics depending on the reactant in the host phase. The efficiency of convective dissolution in partially miscible systems can hence be controlled by the chemicals present in the host fluid and their concentration. The direct comparison between the convective dynamics observed during CO2 dissolution in an aqueous phase and in the ester/water stratification validates the latter as a convenient liquid-liquid model system for the interpretation of the impact of chemical reactivity in geological CO2 sequestration.
منابع مشابه
Numerical Simulation of Mixed Convection Flows in a Square Double Lid-Driven Cavity Partially Heated Using Nanofluid
A numerical study has been done through an Al2O3–water in a double lid-driven square cavity with various inclination angles and discrete heat sources. The top and right moving walls are at low temperature. Half of the left and bottom walls are insulated and the temperatures of the other half are kept at high. A large number of simulations for a wide range of Richardson number ...
متن کاملChemical Control of Hydrodynamic Instabilities in Partially Miscible Two-Layer Systems.
Hydrodynamic instabilities at the interface between two partially miscible liquids impact numerous applications, including CO2 sequestration in saline aquifers. We introduce here a new laboratory-scale model system on which buoyancy- and Marangoni-driven convective instabilities of such partially miscible two-layer systems can easily be studied. This system consists of the stratification of a p...
متن کاملOptimal Control of Nonlinear Multivariable Systems
This paper concerns a study on the optimal control for nonlinear systems. An appropriate alternative in order to alleviate the nonlinearity of a system is the exact linearization approach. In this fashion, the nonlinear system has been linearized using input-output feedback linearization (IOFL). Then, by utilizing the well developed optimal control theory of linear systems, the compensated ...
متن کاملConvection-driven pattern formation in phase-separating binary fluids.
Using a thermal-lattice Boltzmann model, we examine the rich phase behavior that develops when partially miscible fluids evolve in the presence of a vertical temperature gradient, which encompasses the critical temperature T(c) of the mixture. In particular, a binary AB fluid is confined between two plates in a gravitational field. The upper plate is fixed below T(c) and hence, the nearby fluid...
متن کاملRobust Controller Design Based-on Aerodynamic Load Simulator Identification Driven by PMSM for Hardware-in-the-Loop Simulations
Aerodynamic load simulators generate the required time varying load to test the actuator’s performance in the laboratory. Electric Load Simulator (ELS) as one of variety of the dynamic load simulators should follows the rotation of the Under Test Actuator (UTA) and applies the desired torque to UTA’s rotor at the same time. In such a situation, a very large torque is imposed to the ELS from the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 19 11 شماره
صفحات -
تاریخ انتشار 2017